

Tetrahedron Letters, Vol. 38, No. 39, pp. 6835-6836, 1997 © 1997 Elsevier Science Ltd All rights reserved. Printed in Great Britain 0040-4039/97 \$17.00 + 0.00

PII: S0040-4039(97)01619-5

A New, General and Regioselective Method for the Synthesis of

2,6-Disubstituted 4-Aminopteridines

Shahriyar Taghavi-Moghadam and Wolfgang Pfleiderer*

Fakultät für Chemie, Universität Konstanz, Postfach 5560, D-78434 Konstanz, Germany

Abstract: A new synthetic method for the preparation of 2,6-disubstituted 4-aminopteridines is described. Treatment of 2-substituted 4,5,6-triaminopyrimidines with α -ketoaldoximes in MeOH affords in a regioselective one-step reaction 2,6-disubstituted 4-aminopteridines in high yield. © 1997 Elsevier Science Ltd.

The classical synthetic route to pteridines was developed by Isay and Gabriel¹ and involves condensations of 5,6-diaminopyrimidines with 1,2-dicarbonyl compounds. Syntheses using symmetrical 1,2-dicarbonyl derivatives present no regioselectivity problems, but unsymmetrical dicarbonyl components give 6- and 7-substituted product mixtures of ambiguous structures. In special cases, pH-variations effect the orientation¹ but a defined regioselective synthesis affords usually an unambiguous approach as demonstrated by the Timmis¹, the Polonovski-Boon¹ and the Taylor¹ reaction, respectively. Since the majority of naturally occurring pteridines possess a side-chain in 6-position special interest in the development of a simple synthetic approach leading to 6-substituted pteridines even in technical scale is obvious.

Our new method works especially well for the regioselective synthesis of 2,6-disubstituted 4-aminopteridines and is derived from an observation by Kang, Soyka and Pfleiderer² using oximinoacetone for the preparation of 1,3,6-trimethyllumazine in a two-step condensation reaction starting from 5,6-diamino-1,3dimethyluracil.

The general application of the regioselective synthesis could be demonstrated by the condensation of 2-substituted 4,5,6-triaminopyrimidine dihydrohalides (1; X=Br, Cl) with α -ketoaldoximes 2 to form 2,6-disubstitued 4-aminopteridines (3) in good to excellent yields (scheme 1). We are able to prepare the 6-substituted pteridines derivatives 3a-t in a facile one-step reaction with high purity⁶. The 6-halomethyl-pteridines 3b, c, h, l, m, q, r are especially valuable intermediates from a synthetic point of view due to easy nucleophilic substitution reactions in the side-chain leading to folic acid analogues such as the important anti-cancer agents aminopterin and methotrexate, respectively³.

Additionally a great synthetic potential can be attributed to the 6-substituted 2,4-diaminopteridines which are easily converted into the corresponding pterins by either alkaline or acid hydrolysis of the 4-amino-group offering even more flexibility of the new approach⁵.

3	X	R	<u>R²</u>	Yield [%]	3	X	R ¹	R ²	Yield [%]
a	Cl	NH_2	CH ₃	81	k	a	SCH ₃	CH ₃	47
b	Br	NH_2	CH ₂ Br	88	1	Br	SCH ₃	CH ₂ Br	61
с	C	NH_2	CH ₂ Cl	79	m	Cl	SCH ₃	CH ₂ Cl	74
d	Cl	NH_2	CH ₂ CH ₃	76	n	Cl	SCH ₃	CcH	97
e	Cl	NH_2	C ₆ H ₅	93	0	Cl	SCH ₃	p-CH ₃ -C ₆ H ₄	97
f	Cl	NH_2	p-CH ₃ -C ₆ H ₄	88	р	Cl	C ₆ H ₅	CH	61
g	Cl	Н	CH ₃	31	q	Br	C ₆ H ₅	CH ₂ Br	73
h	Cl	Н	CH ₂ Cl	66	r	a	CéHs	CH ₂ Cl	87
i	CI	Н	C ₆ H ₅	88	s	a	CeHs	Calls	88
j	a	Н	p-CH ₃ -C ₆ H ₄	90	t	a	C ₆ H ₅	p-CH ₃ -C ₆ H₄	89

Acknowledgement: We are grateful to the LONZA AG, Visp/ Switzerland for the financial support of this project.

REFERENCES AND NOTES

- 1. For general references on pteridine chemistry: Pfleiderer, W. in "Comprehensive Heterocyclic Chemistry", Katritzky A.R; Rees C. W., eds, Vol 3, Part 2B, Pergamon Press, Oxford, 1984, p 263-327.
- 2. Kang, Y.; Soyka, R.; Pfleiderer, W. J. Heterocyclic Chem. 1987, 24, 597-601.
- 3. Montgomery, J.A.; Piper, J.R.; Elliott, R.D.; Roberts, E.C.; Temple, C.; Shealy, Y.F. J. Heterocyclic Chem. 1987, 24, 279-282.
- ¹H NMR (250 MHz, ppm, DMSO-d6), δ (s, 1H, C(7)-H,): 3a: 8.60, 3b: 8.84, 3c: 8.84, 3d: 8.63, 3e: 9.33, 3f: 9.31, 3g: 8.97, 3h: 9.21, 3i: 9.69, 3j: 9.68, 3k: 8.85, 3l: 9.09, 3m: 9.09, 3n: 9.61, 3o: 9.57, 3p: 8.97, 3q: 9.21, 3r: 9.21, 3s: 9.74, 3t: 9.70.
- 5. The results of these studies have been applied for a patent by LONZA AG, Visp-Basel / Switzerland Pfleiderer, W.; Taghavi-Moghadam, Schweiz. Patentgesuch-No. 03503/95.
- 6. Typical procedure : A suspension of 5 mmol 2-substituted 4,5,6-triaminopyrimidine dihydrohalide (1; X=Br, Cl) in 50 ml methanol was treated with a solution of 7.5 mmol of an α-ketoaldoxime (2) in 10 ml of MeOH at reflux temperature for 2h. The corresponding reaction products (3) were collected after neutralisation with conc. NH₃ at room temperature, washed with methanol, ether and dried at 100 °C in an oven. The isomer purity of the isolated products was proven by ¹H NMR spectroscopy since the chemical shift of the H-C(7) in the pteridine system is decisive for the structural assignments of the isomers⁴.

(Received in Germany 15 July 1997; accepted 4 August 1997)